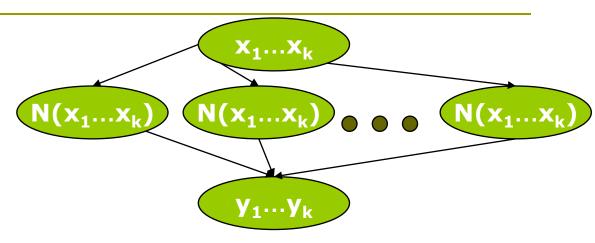
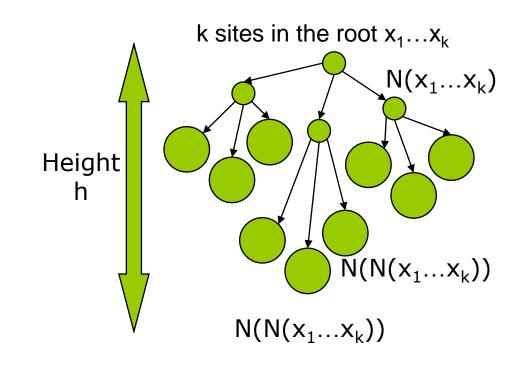

Global Alignment of Molecular Sequences via Ancestral State Reconstruction

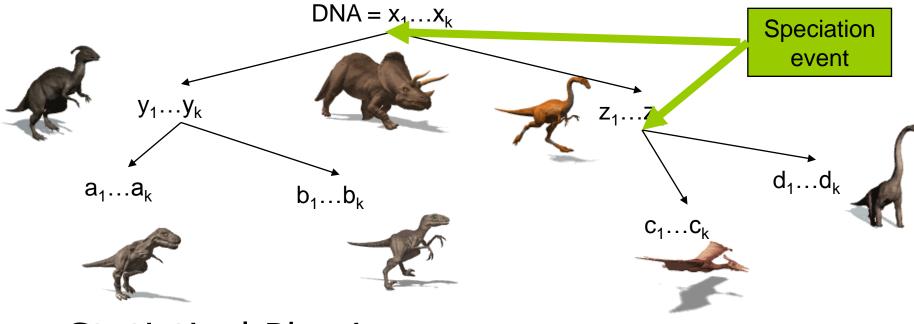

ICS 2010

Alex Andoni, Costis Daskalakis, Avinatan Hassidim and Sebastien Roch Capacity of noisy channels or Trace Reconstruction on a star

- □ Choose k random bits x₁...x_k
- N some noisy channel
- Goal: Given many applications of $N(x_1...x_k)$ reconstruct $y_1...y_k$ s.t. $Pr(x_i = y_i) \ge 0.99$
- How many channel uses do we need?


Number of channel uses

- N applies i.i.d substitutions: constant number of uses (bit wise majority)
- N applies i.i.d. deletions, with constant probability – poly(k) uses [HMPW08]
- Both insertions and deletions, more general channels, subconstant probabilities – many open questions


Trace reconstruction on a tree

- A recursive variant of trace reconstruction on a star
- On each edge, there is a probability for insertions, deletions and substitutions
- We are interested at a constant expansion ratio d

Motivation

Study of more general noisy channels Phylogenetic reconstruction

Statistical Physics

Main result

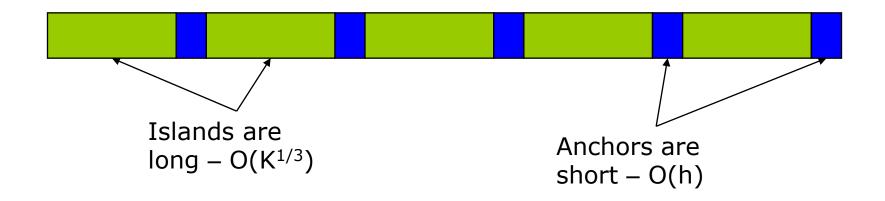
Consider a d-ary tree, and a channel N:

• N applies i.i.d substitutions with probability p_s, s.t.

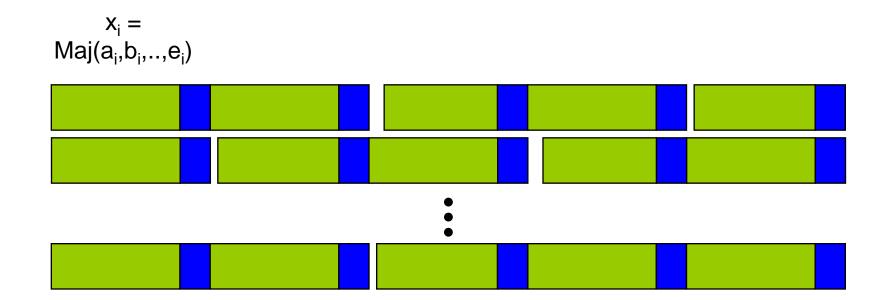
$$\left(1-2p_s\right)^2 > O\left(\frac{\log d}{d}\right)$$

- N applies i.i.d insertions with probability at most O(1/k^{2/3}h)
- N applies i.i.d insertions with probability at most O(1/k^{2/3}h)
- Then one can "reconstruct" x₁...x_k from the leaves of the tree: Find y₁...y_k s.t. Pr(x_i=y_i)>0.99
- Some lower bounds:
 - Maximum substitution probability (without indels)

$$(1-2p_s)^2 > \frac{1}{d}$$


 1/h dependency corresponds to a constant fraction of deletions in the star case

Recursive reconstruction (Mos98)


- Reconstruct the tree layer by layer
- Given d input vertices, reconstruct their father
- Continue recursively until the root is reconstructed
- Challenges:
 - Sometimes the reconstruction fails
 - Even when the reconstruction succeeds, and the children are perfect, the father is reconstructed up to some noise

Reconstructing the father from the children

Each Child is divided into anchors and islands

Reconstruction cntd.

Align the children according to the anchors
Do a place-wise majority on the children

Where can we succeed?

We can not reconstruct all the vertices correctly

 Suppose the first bit gets deleted going from the father to all the children

Call a vertex v good if all three hold:

- There are no indel operations in the anchor, when going from v to its children
- In each island of v, there is at most one indel operation
- It has at least d-2 good children

The algorithm reconstructs all good vertices

Correctness of the reconstruction

- Main Result follows from two theorems
- Thm 1: With high probability, the root is good
- Thm 2: The algorithm reconstructs all good vertices correctly

Thm 1 – w.h.p the root is good

- Proof sketch: Show by induction on the height that most vertices are good.
- When is a vertex not good?
 - When there are indels in the anchors: Improbable event, as anchors are short
 - When there are two deletions in the same island: Improbable event, the islands have length k^{1/3}, and the indel probability is 1/k^{2/3}
 - When two children are not good: improbable event by induction hypothesis
- Probability that the root is good >0.99

Thm 2: reconstruction of good vertices

- Proof is by induction.
- Suppose v is good. All good children (> d-1) reconstructed "correctly"
- Reconstructed children + No indels in anchors → Alignment of the anchors is "correct"
- □ Correct alignment + each island suffers at most one deletion → y_i is a majority of d values, such that d-2 of them are his true descendents
- Given that the majority is on the right descendents, we do not need to worry about the indels. Thm 2 holds because majority does error correction.

Open questions

- Adversarial root
- Can we use these techniques to say something about the star case?
- Improving the parameters. In particular, a weaker definition of reconstruction, with higher deletion probabilities.
- Can we do something even without the tree?
 - Follow up work shows how to reconstruct the topology of the tree (ABH'09)

